David Parsons

Foundational Java

Key Elements and Practical Programming

Chapter 11
Exploring the Java Libraries

Foundational Java

Key Elements and Practical Programming

Foundational Java by David Parsons © 2012

Library Classes

Reuse existing classes rather than re-inventing the
wheel

Object oriented programming offers reuse of existing
classes

— Save time by not having to implement the code.
— Library code has already been extensively tested

Use the Javadoc to find classes to reuse in JRE

Other sources
— commercial or open source projects

Art of Java is assembling components from other
sources

Foundational Java by David Parsons © 2012

Frequently Used Classes in java.lang

* java.lang.Object
* java.lang.Math
* java.lang.System

* java.lang.Class
 Wrapper classes - java.lang.Integer etc...

Foundational Java by David Parsons © 2012

l Foundational Java

Key Elements an d Practical Programming

The java.lang.Object Class

* As the root of the class hierarchy, the Object class is a superclass for
all other classes

— Every class inherits the methods that are defined in the Object class

 The Object class defines the default behavior for all objects through
methods like:

— equals(java.lang.Object) // returns a boolean

— getClass() // returns a Class object
— toString() // returns a String representation of the object
— hashCode() // returns an integer for indexing hash tables

e ‘wait’, ‘notify’ and ‘notifyAll’ relate to multithreading
* Only other methods on the Object class are ‘finalize’” and ‘clone’.

protected void finalize() throws Throwable
protected Object clone() throws CloneNotSupportedException

Foundational Java by David Parsons © 2012

The ‘finalize’” Method

Called on an object if it is garbage collected

No guarantee that a given object will be garbage
collected

— no guarantee that this method will ever be called

Provides an opportunity for an object to release
any resources that it may be holding before it is
disposed of

‘finalize’ has ‘protected’ visibility on the Object
class

— Not automatically available as public methods of
subclasses

Foundational Java by David Parsons © 2012

l Foundational Java

Key Elements an d Practical Programming

The ‘clone’ Method

* ‘clone’ makes a shallow copy of the current object

Object object2 = objectl; // by default is equal to
Object object2 = object2.clone();

* ‘clone’ can be overridden to give a different behaviour
— Override ‘clone’ to provide a deep copy of an object
— Original object and copy are independent

* The basic implementation should always return
‘super.clone’.

@Override
public Object clone() throws CloneNotSupportedException

{
}

return super.clone();

Foundational Java by David Parsons © 2012

l Foundational Java
Key El Practica

ements and | Programming

The Cloneable Interface

* The class being cloned must also implement the
‘Cloneable’ interface

— Otherwise the CloneNotSupportedException will be
thrown.

public class CloneExample implements Cloneable

...

* Implementing ‘clone’

public Object clone() throws CloneNotSupportedException {
CloneExample clone = (CloneExample)super.clone();
int[] clonedArray = getArray();
int[] copiedArray = new int[clonedArray.length];
for(inti = 0; i < clonedArray.length; i++) {
copiedArray[i] = clonedArrayf]i];
}
clone.setArray(copiedArray);
return clone;

Foundational Java by David Parsons © 2012

Exercise 11.1

e Override the ‘clone’ method for the Course
class so that it makes a deep copy of its array
of Modules

* Write a JUnit test case that shows that your
clone method is, in fact, making a deep copy

— This will involve cloning a course, changing the
modules of the original course and testing that
the clone remains unchanged

Foundational Java by David Parsons © 2012

Foundational Java
Key Elements and Practical i

ogramming

The java.lang.Math Class

e All the methods in the Math class are static
methods

e These methods allow a user to construct and
evaluate mathematical expressions

— Work with overloaded data types or assume
double parameters and return types

Returns the value of x raised Math.pow(2,3)
doubley) to the power of y //2°=8
Returns the smallest integer Math.ceil(5.2)
greater than or equal to x //=6
double Math.sqgrt(double x) Returns the square root of x ~ Math.sqrt(9)
ational Java by David Parsons © 2012 // =3

Foundational Java

Key Elements and Practical Programming

Math Class Constants

 The Math class also includes two public
constants

public static final double E; // the base of the natural logarithms
public static final double PI; // the ratio of the circumference of a circle to its diameter

* |[nvoke using the class:

Math.PI

Math.E

java.lang.Math % From the Javadoc]
public =tatic final double |E |2.718281828459045

public static final double PI (3.14153826533588783

Foundational Java by David Parsons © 2012

l Foundational Java

Key Elements and Practical Programming

Exercise 11.2

 Use the Math.pow and Math.sqrt methods to calculate the
hypotenuse (longest side) of a right angled triangle

* According to Pythagoras, the square of the hypotenuse is equal to
the sum of the squares of the other two sides
* Your code needs to:
— Calculate the squares of the two shorter sides

— Add these squares together
— Find the square root of this value; this will be the length of the longest
side
* Use a ‘test first’ approach
— Begin by writing a JUnit test case that expects a correct answer

— e.g. the hypotenuse of a right angled triangle with side lengths of 12
and 5is 13

— Once you have written the tests, write the unit under test

Foundational Java by David Parsons © 2012

The java.lang.System Class

e Like the Math class, all the methods in the
System class are static methods

* These methods provide platform-independent
access to underlying system functions

 The System class also has static fields

— ‘in’, ‘out’, and ‘err’ represent standard input,
standard output, and standard error output

respectively

Foundational Java by David Parsons © 2012

Using System.err

* ‘try’ block uses ‘System.out’
e ‘catch’ block uses ‘System.err’
e System.err is the default for stack traces

public static void main(String[] args) {

try {
System.out.printin("About to do some arithmetic");
intx =1;
Inty = x/0;

}

catch(ArithmeticException e) {
System.err.printin("Oh dear...");
e.printStackTrace(System.err);

}
}

l Foundational Java

Key Elements an d Practical Programming

Wrapper Classes

* For each of the primitive data types there exists a
corresponding class

— Byte, Short, Character, Integer, Long, Float, Double,
Boolean

* This allows Java to construct an object whose state
reflects the value of a given primitive data type

— The object serves to “wrap” the primitive data type

 Wrapper classes have various fields and methods
appropriate to their types

Boolean aBoolean = Boolean. TRUE;
aBoolean.equals(new Boolean(true)); // true

Character aCharacter = new Character('c’);
aCharacter.isDigit(); // false

Foundational Java by David Parsons © 2012

Data Conversion With Wrapper Classes

* Wrapper classes can be used to convert strings
to numbers

— The number classes have static ‘parse...” methods
that convert in one step

— e.g. the Integer class has a parselnt method

int year = Integer.parselnt("1066");

Foundational Java by David Parsons © 2012

l Foundational Java

Key Elements and Practical Programming

Wrappers and Collections

* Java collection classes such as ArrayList can only hold objects

* If you want to store a particular primitive data type in a

collection, the primitive must be put into a wrapper object
before being added to it:

int myInt =25; // cannot be added to a Java collection
Integer myInteger = new Integer(myint); // mylnteger can be added to a collection

* (Can be done automatically using ‘autoboxing’

* Wrapper classes have overloaded constructors that allow
objects to be created from different types of data

Integer intl = new Integer(42);
Integer int2 = new Integer("42"),

Foundational Java by David Parsons © 2012

Foundatlonal Java

Classes in the java.util Package

This package contains utility classes

t includes the collection classes that we will
ook at later

t also includes the classes
Date

Calendar

Unlike java.1ang, classes from java.util must
oe explicitly imported

import java.util.*;

Foundational Java by David Parsons © 2012

The Date Class

* Date has largely become immutable

— Methods to manipulate dates are deprecated and
now part of the Calendar class

* Deprecated methods are indicated in Eclipse
with strikethrough text

Date date = new Date|():

date.gatbay ()

Foundational Java by David Parsons © 2012

The Calendar Class and Factory
Methods

* Calendar represents a mutable date

* Does not have a public constructor

Calendar cal = new Calendar(); // will not compile

* Created using a Factory method

Calendar cal = Calendar.getinstance();

* The ‘clear’ method sets all the fields to
appropriate zero or null values

cal.clear();

Foundational Java by David Parsons © 2012

Foundatlonal Java

Calendar Methods

Elements of the calendar can be set, e.g.

cal.set(year, month, day);

— Using int parameters — use full year, month values
are from0Oto 11, e.g.

cal.set(1970, O, 1);

 The current date can be returned as a Date
instance, using the getTime() method

Date myDate = cal.getTime();

Foundational Java by David Parsons © 2012

Foundatlonal Java

Formatter Classes in java.text

e DateFormat and NumberFormat classes
e Part of the java.text package

e Convert from Strings to objects (and primitive
types) using ‘format’ methods

e Convert from objects (and primitive types) to
Strings using ‘parse’ methods

e Customizable formatting

Foundational Java by David Parsons © 2012

Foundatlonal Java

Format and Parse

* ‘format’ methods convert from objects or
primitive types to Strings

‘parse’ methods convert from Strings to
objects or primitive types

parse

DateFormat /
NumberFormat

format

Foundational Java by David Parsons © 2012

l Foundational Java
Key Elements and Practica i

| Programming

Formatting Dates

 We can format dates using a DateFormat
object

— factory methods rather than constructors

e ‘getinstance’ method creates a DateFormat
object with default ‘short’ format

DateFormat defaultDateFormat = DateFormat.getinstance();

* Passing a Date object to the ‘format’ method
returns a String containing the formatted date

System.out.printin(defaultDateFormat.format(date)); 1/1/70 12:00 AM

Foundational Java by David Parsons © 2012

Built-In Date Formats

* Built in formats are specified as static final
fields in the DateFormat class
— SHORT, MEDIUM, LONG, FULL
* To set a specific pattern, use the factory

method ‘getDatelnstance(int)’ and pass one of
the four constants as the parameter, e.g.

DateFormat longDateFormat = DateFormat.getDatelnstance(DateFormat.LONG);

January 1, 1970

Foundational Java by David Parsons © 2012

l Foundational J
Key El Practica

ements and

Applying Format Patterns

Custom format patterns can be applied
Cast the DateFormat down to SimpleDateFormat

ava

| Programming

SimpleDateFormat custombDateFormat =

(SimpleDateFormat) DateFormat.getDatelnstance();

SimpleDateFormat has an ‘applyPattern” method

— uses special characters

This pattern is day, month, year, separated by
forward slashes (case is significant)

customDateFormat.applyPattern("dd/MM/yy");

01/01/70

Foundational Java by David Parsons © 2012

' Foundational Java

" Key Elements and Practical Programming

Date and Time Patterns

Date or Time Component M_

_Era designator

Year

_Month in year
_Week in year
_Week in month
_Day in year

Day in month
_Day of week in month
Day in week
_Am/pm marker
_Hour in day (0-23)
_Hour in day (1-24)
_Hour inam/pm (0-11)
_Hour inam/pm (1-12)
_Minute in hour
-Second in minute
_Millisecond
-Time zone
_Time zone

Text
Year
Month
Number
Number
Number
Number
Number
Text
Text
Number
Number
Number
Number
Number
Number
Number

1996; 96
July; Jul; 07
27

2

189

10

2

Tuesday; Tue
PM

0

24

0

12

30

55

978

General time zone Pacific Standard Time; PST; GMT-08:00

RFC 822 time zone
Foundational Java by David Parsons © 2012

-0800

Date Format Examples

* Using three ‘M’ characters displays an
abbreviated month name.

customDateFormat.applyPattern("dd-MMM-yyyy"); 01-Jan-1970

* Using four ‘M’ characters for the month would

use the full month name:
0l1-January-1970

* This example includes the full day name
customDateFormat.applyPattern("EEEE dd MMMM, yyyy");

Thursday 01 January, 1970

Foundational Java by David Parsons © 2012

Foundatlonal Java

Parsing Dates

 The DateFormat’s ‘parse’ method can be used
to convert Strings to Dates

* The String pattern used in the ‘applyPattern’
method determines the way that dates are
parsed

 The number of characters is not important
when parsing

SimpleDateFormat parseDateFormat = new SimpleDateFormat("M/d/y");

Foundational Java by David Parsons © 2012

l Foundational Java

Key Elements and Practical Programming

Date Parsing Example

SimpleDateFormat parseDateFormat = new SimpleDateFormat("M/d/y");

try
{

Date d = parseDateFormat.parse("10/22/2012");

System.out.printin(d);
}

catch(ParseException e)

{
}

e.printStackTrace();

Mon Oct 22 00:00:00 NZDT 2012

Foundational Java by David Parsons © 2012

Exercise 11.3

Use a Calendar to create and set a specific date

Get a Date from the Calendar (using the ‘getTime’
method)

Format the Date using a consistent separation
character (e.g. ‘/’)

Use the ‘split” method of the String class to split the
formatted date into separate values and display them

The ‘split” method can be used to split a String using a
separator String. It returns an array of Strings

— in this example a space is used as the separator String

String st = new String("this is a test");
String[] split = st.split(" ");

Foundational Java by David Parsons © 2012

Foundatlonal Java

Formatting and Parsing Numbers

 Use a NumberFormat object from a factory
method

NumberFormat numFormat = NumberFormat.getNumberinstance();

* Has default formats
— default number of decimal places

— will round the result
String s1 = numFormat.format(1234.56789); // "1,234.568”

* Another default behaviour is to remove trailing
Zeros
String s2 = numFormat.format(1234.00); // "1,234"

Foundational Java by David Parsons © 2012

Number Formats

 Format behaviour can be configured

* e.g. specify number of digits after the decimal
point
* using the ‘setMaximumFractionDigits’ method

numFormat.setMaximumFractionDigits(2);
sl = numFormat.format(1234.56789); // "1,234.57”

Foundational Java by David Parsons © 2012

l Foundational Java

Key Elements and Practical Programming

The Number Class

* ‘parse’ methods of NumberFormat class parse Strings
into numbers

e Return instances of the Number class
— Superclass of the number wrapper classes

e Has various methods to return primitive numbers
— ‘byteValue’, ‘doubleValue’, ‘intValue’ etc.

 Some element of truncation or rounding is possible

try {
Number num = numFormat.parse("1234.5");

System.out.printin(num.doubleValue());
System.out.printin(num.intValue());
}
catch (ParseException e) {
e.printStackTrace();

} Foundational Java by David Parsons © 2012

l Foundational Java
Key El Practica

ements and | Programming

Formatting Currency

* A special currency instance of the NumberFormat
class can be created to enable the formatting and
narsing of values that represent currency

NumberFormat dollarFormat = NumberFormat.getCurrencylnstance();

* The factory method ‘getCurrencylnstance’ uses
your default locale to determine the type of
currency and the format of the output

— e.g. format a double unto a currency String (in a dollar
locale).

double value = 1234.5;
System.out.printin(dolarFermatfermat(value)p#01$1,234.50”

Parsing Currency

* |n this example, we parse a String into a
Number and then return the ‘doubleValue’.

try
{

// must be a parseable string in the local currency
value = dollarFormat.parse("$5,432.10").doubleValue();
System.out.printin(value); //5432.1

}

catch (ParseException e)

{
}

e.printStackTrace();

Foundational Java by David Parsons © 2012

l Foundational Java
Key El Practica

ements and | Programming

Handling Different Currencies

e Java provides for different formats based on
country

* The Locale class defines formatting options for
numbers, dates and currencies

NumberFormat euroFormat =

NumberFormat.getCurrencylnstance(Locale. GERMANY);
System.out.printin(euroFormat.format(1234.0)); // ”1.234,00 €

NumberFormat yenFormat =
NumberFormat.getCurrencylnstance(Locale.JAPAN);
System.out.printin(yenFormat.format(1234.0)); // "¥1,234.00"

— Locales do nothing to convert between currencies

Foundational Java by David Parsons © 2012

Foundatlonal Java

Exercise 11.4

 Add a method to the BankAccount class (the
one you created in Exercise 9.3) to return a
formatted balance

Use a currency instance of the NumberFormat
class

Foundational Java by David Parsons © 2012

Exercise 11.5

* |[n your BankAccount class, replace the double
field that represents the balance of the
account with a java.math.BigDecimal

e Use the Javadoc to find out how to use this
class in your code so that the methods still

work

Foundational Java by David Parsons © 2012

Summary

* This chapter covered a small sample of classes
from some of the packages in the Java libraries

— Object, Math, System and the wrapper classes from
java.lang

— Date and Calendar classes from java.util

— Classes from java.text to format and parse dates,
numbers and currencies

* Reuse existing library classes as much as possible

 Become familiar with using the Javadoc to
explore classes and methods

Foundational Java by David Parsons © 2012

