
Chapter 11
Exploring the Java Libraries

Foundational Java
Key Elements and Practical Programming

Foundational Java by David Parsons © 2012

Library Classes
• Reuse existing classes rather than re-inventing the

wheel
• Object oriented programming offers reuse of existing

classes
– Save time by not having to implement the code.
– Library code has already been extensively tested

• Use the Javadoc to find classes to reuse in JRE
• Other sources

– commercial or open source projects

• Art of Java is assembling components from other
sources

Foundational Java by David Parsons © 2012

Frequently Used Classes in java.lang

• java.lang.Object

• java.lang.Math

• java.lang.System

• java.lang.Class

• Wrapper classes - java.lang.Integer etc...

Foundational Java by David Parsons © 2012

The java.lang.Object Class
• As the root of the class hierarchy, the Object class is a superclass for

all other classes
– Every class inherits the methods that are defined in the Object class

• The Object class defines the default behavior for all objects through
methods like:
– equals(java.lang.Object) // returns a boolean
– getClass() // returns a Class object
– toString() // returns a String representation of the object
– hashCode() // returns an integer for indexing hash tables

• ‘wait’, ‘notify’ and ‘notifyAll’ relate to multithreading
• Only other methods on the Object class are ‘finalize’ and ‘clone’.

protected void finalize() throws Throwable

protected Object clone() throws CloneNotSupportedException

Foundational Java by David Parsons © 2012

The ‘finalize’ Method

• Called on an object if it is garbage collected
• No guarantee that a given object will be garbage

collected
– no guarantee that this method will ever be called

• Provides an opportunity for an object to release
any resources that it may be holding before it is
disposed of

• ‘finalize’ has ‘protected’ visibility on the Object
class
– Not automatically available as public methods of

subclasses

Foundational Java by David Parsons © 2012

The ‘clone’ Method

• ‘clone’ makes a shallow copy of the current object
– By default it only makes a shallow copy

• ‘clone’ can be overridden to give a different behaviour
– Override ‘clone’ to provide a deep copy of an object

– Original object and copy are independent

• The basic implementation should always return
‘super.clone’.

@Override

public Object clone() throws CloneNotSupportedException

{

return super.clone();

}

Object object2 = object1; // by default is equal to

Object object2 = object2.clone();

Foundational Java by David Parsons © 2012

The Cloneable Interface

• The class being cloned must also implement the
‘Cloneable’ interface
– Otherwise the CloneNotSupportedException will be

thrown.

• Implementing ‘clone’

public class CloneExample implements Cloneable

{…

public Object clone() throws CloneNotSupportedException {

CloneExample clone = (CloneExample)super.clone();

int[] clonedArray = getArray();

int[] copiedArray = new int[clonedArray.length];

for(int i = 0; i < clonedArray.length; i++) {

copiedArray[i] = clonedArray[i];

}

clone.setArray(copiedArray);

return clone;

}
Foundational Java by David Parsons © 2012

Exercise 11.1

• Override the ‘clone’ method for the Course
class so that it makes a deep copy of its array
of Modules

• Write a JUnit test case that shows that your
clone method is, in fact, making a deep copy

– This will involve cloning a course, changing the
modules of the original course and testing that
the clone remains unchanged

Foundational Java by David Parsons © 2012

The java.lang.Math Class

• All the methods in the Math class are static
methods

• These methods allow a user to construct and
evaluate mathematical expressions

– Work with overloaded data types or assume
double parameters and return types

Method Usage Example
double Math.pow(double x,
double y)

Returns the value of x raised
to the power of y

Math.pow(2,3)
// 23 = 8

double Math.ceil(double x) Returns the smallest integer
greater than or equal to x

Math.ceil(5.2)
// = 6

double Math.sqrt(double x) Returns the square root of x Math.sqrt(9)
// = 3Foundational Java by David Parsons © 2012

Math Class Constants

• The Math class also includes two public
constants

• Invoke using the class:

public static final double E; // the base of the natural logarithms

public static final double PI; // the ratio of the circumference of a circle to its diameter

From the Javadoc

Math.PI

Math.E

Foundational Java by David Parsons © 2012

Exercise 11.2
• Use the Math.pow and Math.sqrt methods to calculate the

hypotenuse (longest side) of a right angled triangle
• According to Pythagoras, the square of the hypotenuse is equal to

the sum of the squares of the other two sides
• Your code needs to:

– Calculate the squares of the two shorter sides
– Add these squares together
– Find the square root of this value; this will be the length of the longest

side

• Use a ‘test first’ approach
– Begin by writing a JUnit test case that expects a correct answer
– e.g. the hypotenuse of a right angled triangle with side lengths of 12

and 5 is 13
– Once you have written the tests, write the unit under test

Foundational Java by David Parsons © 2012

The java.lang.System Class

• Like the Math class, all the methods in the
System class are static methods

• These methods provide platform-independent
access to underlying system functions

• The System class also has static fields

– ‘in’, ‘out’, and ‘err’ represent standard input,
standard output, and standard error output
respectively

Foundational Java by David Parsons © 2012

Using System.err

• ‘try’ block uses ‘System.out’

• ‘catch’ block uses ‘System.err’

• System.err is the default for stack traces
public static void main(String[] args) {

try {

System.out.println("About to do some arithmetic");

int x = 1;

int y = x/0;

}

catch(ArithmeticException e) {

System.err.println("Oh dear...");

e.printStackTrace(System.err);

}

}
Foundational Java by David Parsons © 2012

Wrapper Classes
• For each of the primitive data types there exists a

corresponding class
– Byte, Short, Character, Integer, Long, Float, Double,

Boolean

• This allows Java to construct an object whose state
reflects the value of a given primitive data type
– The object serves to “wrap” the primitive data type

• Wrapper classes have various fields and methods
appropriate to their types

Boolean aBoolean = Boolean.TRUE;

aBoolean.equals(new Boolean(true)); // true

Character aCharacter = new Character('c');

aCharacter.isDigit(); // false

Foundational Java by David Parsons © 2012

Data Conversion With Wrapper Classes

• Wrapper classes can be used to convert strings
to numbers

– The number classes have static ‘parse…’ methods
that convert in one step

– e.g. the Integer class has a parseInt method

int year = Integer.parseInt("1066");

Foundational Java by David Parsons © 2012

Wrappers and Collections

• Java collection classes such as ArrayList can only hold objects

• If you want to store a particular primitive data type in a
collection, the primitive must be put into a wrapper object
before being added to it:

• Can be done automatically using ‘autoboxing’

• Wrapper classes have overloaded constructors that allow
objects to be created from different types of data

int myInt = 25; // cannot be added to a Java collection

Integer myInteger = new Integer(myInt); // myInteger can be added to a collection

Integer int1 = new Integer(42);

Integer int2 = new Integer("42");

Foundational Java by David Parsons © 2012

Classes in the java.util Package

• This package contains utility classes

• It includes the collection classes that we will
look at later

• It also includes the classes
Date

Calendar

• Unlike java.lang, classes from java.util must
be explicitly imported
import java.util.*;

Foundational Java by David Parsons © 2012

The Date Class

• Date has largely become immutable

– Methods to manipulate dates are deprecated and
now part of the Calendar class

• Deprecated methods are indicated in Eclipse
with strikethrough text

Foundational Java by David Parsons © 2012

The Calendar Class and Factory
Methods

• Calendar represents a mutable date

• Does not have a public constructor

• Created using a Factory method

• The ‘clear’ method sets all the fields to
appropriate zero or null values

Calendar cal = Calendar.getInstance();

cal.clear();

Calendar cal = new Calendar(); // will not compile

Foundational Java by David Parsons © 2012

Calendar Methods

• Elements of the calendar can be set, e.g.

– Using int parameters – use full year, month values
are from 0 to 11, e.g.

• The current date can be returned as a Date
instance, using the getTime() method

cal.set(1970, 0, 1);

cal.set(year, month, day);

Date myDate = cal.getTime();

Foundational Java by David Parsons © 2012

Formatter Classes in java.text

• DateFormat and NumberFormat classes

• Part of the java.text package

• Convert from Strings to objects (and primitive
types) using ‘format’ methods

• Convert from objects (and primitive types) to
Strings using ‘parse’ methods

• Customizable formatting

Foundational Java by David Parsons © 2012

Format and Parse

• ‘format’ methods convert from objects or
primitive types to Strings

• ‘parse’ methods convert from Strings to
objects or primitive types

Object String

DateFormat /

NumberFormat

parse

format

Foundational Java by David Parsons © 2012

Formatting Dates

• We can format dates using a DateFormat
object

– factory methods rather than constructors

• ‘getInstance’ method creates a DateFormat
object with default ‘short’ format

• Passing a Date object to the ‘format’ method
returns a String containing the formatted date

DateFormat defaultDateFormat = DateFormat.getInstance();

System.out.println(defaultDateFormat.format(date)); 1/1/70 12:00 AM

Foundational Java by David Parsons © 2012

Built-In Date Formats

• Built in formats are specified as static final
fields in the DateFormat class

– SHORT, MEDIUM, LONG, FULL

• To set a specific pattern, use the factory
method ‘getDateInstance(int)’ and pass one of
the four constants as the parameter, e.g.

DateFormat longDateFormat = DateFormat.getDateInstance(DateFormat.LONG);

January 1, 1970

Foundational Java by David Parsons © 2012

Applying Format Patterns

• Custom format patterns can be applied

• Cast the DateFormat down to SimpleDateFormat

• SimpleDateFormat has an ‘applyPattern’ method

– uses special characters

• This pattern is day, month, year, separated by
forward slashes (case is significant)

SimpleDateFormat customDateFormat =

(SimpleDateFormat) DateFormat.getDateInstance();

customDateFormat.applyPattern("dd/MM/yy"); 01/01/70

Foundational Java by David Parsons © 2012

Date and Time Patterns
Letter Date or Time Component Presentation Examples

G Era designator Text AD

y Year Year 1996; 96

M Month in year Month July; Jul; 07

w Week in year Number 27

W Week in month Number 2

D Day in year Number 189

d Day in month Number 10

F Day of week in month Number 2

E Day in week Text Tuesday; Tue

a Am/pm marker Text PM

H Hour in day (0-23) Number 0

k Hour in day (1-24) Number 24

K Hour in am/pm (0-11) Number 0

h Hour in am/pm (1-12) Number 12

m Minute in hour Number 30

s Second in minute Number 55

S Millisecond Number 978

z Time zone General time zone Pacific Standard Time; PST; GMT-08:00

Z Time zone RFC 822 time zone -0800
Foundational Java by David Parsons © 2012

Date Format Examples

• Using three ‘M’ characters displays an
abbreviated month name.

• Using four ‘M’ characters for the month would
use the full month name:

• This example includes the full day name

customDateFormat.applyPattern("dd-MMM-yyyy");

customDateFormat.applyPattern("EEEE dd MMMM, yyyy");

01-Jan-1970

01-January-1970

Thursday 01 January, 1970

Foundational Java by David Parsons © 2012

Parsing Dates

• The DateFormat’s ‘parse’ method can be used
to convert Strings to Dates

• The String pattern used in the ‘applyPattern’
method determines the way that dates are
parsed

• The number of characters is not important
when parsing

SimpleDateFormat parseDateFormat = new SimpleDateFormat("M/d/y");

Foundational Java by David Parsons © 2012

Date Parsing Example

SimpleDateFormat parseDateFormat = new SimpleDateFormat("M/d/y");

try

{

Date d = parseDateFormat.parse("10/22/2012");

System.out.println(d);

}

catch(ParseException e)

{

e.printStackTrace();

}

Mon Oct 22 00:00:00 NZDT 2012

Foundational Java by David Parsons © 2012

Exercise 11.3

• Use a Calendar to create and set a specific date

• Get a Date from the Calendar (using the ‘getTime’
method)

• Format the Date using a consistent separation
character (e.g. ‘/’)

• Use the ‘split’ method of the String class to split the
formatted date into separate values and display them

• The ‘split’ method can be used to split a String using a
separator String. It returns an array of Strings
– in this example a space is used as the separator String

Foundational Java by David Parsons © 2012

String st = new String("this is a test");

String[] split = st.split(" ");

Formatting and Parsing Numbers

• Use a NumberFormat object from a factory
method

• Has default formats
– default number of decimal places

– will round the result

• Another default behaviour is to remove trailing
zeros
String s2 = numFormat.format(1234.00); // "1,234"

NumberFormat numFormat = NumberFormat.getNumberInstance();

String s1 = numFormat.format(1234.56789); // "1,234.568”

Foundational Java by David Parsons © 2012

Number Formats

• Format behaviour can be configured

• e.g. specify number of digits after the decimal
point

• using the ‘setMaximumFractionDigits’ method

numFormat.setMaximumFractionDigits(2);

s1 = numFormat.format(1234.56789); // "1,234.57”

Foundational Java by David Parsons © 2012

The Number Class
• ‘parse’ methods of NumberFormat class parse Strings

into numbers
• Return instances of the Number class

– Superclass of the number wrapper classes

• Has various methods to return primitive numbers
– ‘byteValue’, ‘doubleValue’, ‘intValue’ etc.

• Some element of truncation or rounding is possible

try {

Number num = numFormat.parse("1234.5");

System.out.println(num.doubleValue());

System.out.println(num.intValue());

}

catch (ParseException e) {

e.printStackTrace();

} Foundational Java by David Parsons © 2012

Formatting Currency

• A special currency instance of the NumberFormat
class can be created to enable the formatting and
parsing of values that represent currency

• The factory method ‘getCurrencyInstance’ uses
your default locale to determine the type of
currency and the format of the output

– e.g. format a double unto a currency String (in a dollar
locale).

double value = 1234.5;

System.out.println(dollarFormat.format(value)); // ”$1,234.50”

NumberFormat dollarFormat = NumberFormat.getCurrencyInstance();

Foundational Java by David Parsons © 2012

Parsing Currency

• In this example, we parse a String into a
Number and then return the ‘doubleValue’.

try

{

// must be a parseable string in the local currency

value = dollarFormat.parse("$5,432.10").doubleValue();

System.out.println(value); // 5432.1

}

catch (ParseException e)

{

e.printStackTrace();

}

Foundational Java by David Parsons © 2012

Handling Different Currencies

• Java provides for different formats based on
country

• The Locale class defines formatting options for
numbers, dates and currencies

– Locales do nothing to convert between currencies

NumberFormat euroFormat =

NumberFormat.getCurrencyInstance(Locale.GERMANY);

System.out.println(euroFormat.format(1234.0)); // ”1.234,00 €”

NumberFormat yenFormat =

NumberFormat.getCurrencyInstance(Locale.JAPAN);

System.out.println(yenFormat.format(1234.0)); // ”¥1,234.00"

Foundational Java by David Parsons © 2012

Exercise 11.4

• Add a method to the BankAccount class (the
one you created in Exercise 9.3) to return a
formatted balance

• Use a currency instance of the NumberFormat
class

Foundational Java by David Parsons © 2012

Exercise 11.5

• In your BankAccount class, replace the double
field that represents the balance of the
account with a java.math.BigDecimal

• Use the Javadoc to find out how to use this
class in your code so that the methods still
work

Foundational Java by David Parsons © 2012

Summary

• This chapter covered a small sample of classes
from some of the packages in the Java libraries
– Object, Math, System and the wrapper classes from

java.lang

– Date and Calendar classes from java.util

– Classes from java.text to format and parse dates,
numbers and currencies

• Reuse existing library classes as much as possible

• Become familiar with using the Javadoc to
explore classes and methods

Foundational Java by David Parsons © 2012

